Cation-Binding Hosts

Classes of cyclic and acyclic ligands

- Open chain
- Cyclic
- Three-dimensional

Podand
D = donor atom

Corand
D = O, Crown ether

Cryptand
B = bridgehead atom
• Podands

• Corands

Crown ethers
Azacorands

- 18<N_62_6>corand-6
- [18]ane-N_6 hexacyclen
- 14<N_42_3_2>corand-4
tetraza[14]crown-4 cyclam
- 18<O_3N_32_6>corand-6

Azacorands

• Lariat ethers (corand-podand hybrids)

BiBLE (bi-bracchial lariat ether)
- Cryptands

Crypt from the Latin *crypta*, meaning concealed, private
• **Crown Ethers**

Accidental synthesis of the first crown ether, dibenzo[18]crown-6, by Pedersen

\[
\text{Minor product} \\
\begin{align*}
\text{trace amount (contaminant)} \\
\text{Major product}
\end{align*}
\]

Cyclic Polyethers and Their Complexes with Metal Salts

C. J. Pedersen

Contribution No. 157 from E. I. du Pont de Nemours and Company, Inc., Elastomer Chemicals Department, Experimental Station, Wilmington, Delaware 19898. Received April 13, 1967

JACS, 1967, 89, 7017
Common crown ethers

Complementary to Na⁺

[18]crown-6
Complementary to K⁺

[21]crown-7
Complementary to Cs⁺

Dicyclohexyl[18]crown-6
More conformationally rigid

Dibenzo[30]crown-10
Binds two Na⁺ ions

Dibenzo[26]crown-4
An unusual example

Space-filling model of complex between 18-C-6 and K⁺
Table 1. Binding Data for Simple Crown Ethers

<table>
<thead>
<tr>
<th>compound</th>
<th>solvent</th>
<th>dielectric, ϵ</th>
<th>log K_S Na$^+$</th>
<th>log K_S K$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-crown-4</td>
<td>methanol</td>
<td>33</td>
<td>1.7</td>
<td>1.3</td>
</tr>
<tr>
<td>15-crown-5</td>
<td>methanol</td>
<td>33</td>
<td>3.24</td>
<td>3.43</td>
</tr>
<tr>
<td>18-crown-6</td>
<td>dioxane</td>
<td>2</td>
<td>4.55</td>
<td></td>
</tr>
<tr>
<td>18-crown-6</td>
<td>methanol</td>
<td>33</td>
<td>4.35</td>
<td>6.08</td>
</tr>
<tr>
<td>18-crown-6</td>
<td>acetonitrile</td>
<td>37</td>
<td>4.8</td>
<td>5.7</td>
</tr>
<tr>
<td>18-crown-6</td>
<td>water</td>
<td>80</td>
<td>1.8</td>
<td>2.06</td>
</tr>
</tbody>
</table>

Figure 15. Binding constants (log K_S) for $3n$-crown-n ($n = 4$–8) compounds with Na$^+$, K$^+$, Ca$^{2+}$, and NH$_4^+$ determined in CH$_3$OH at 25 $^\circ$C.
Table 2.1 Binding constants obtained for various cations and a selection of crown ethers (log K, methanol, 20°C)

<table>
<thead>
<tr>
<th>Crown ether</th>
<th>Na$^+$</th>
<th>K$^+$</th>
<th>Rb$^+$</th>
<th>Cs$^+$</th>
<th>Ca$^{2+}$</th>
<th>NH$_4^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[12]crown-4</td>
<td>1.70</td>
<td>1.30</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>[15]crown-5</td>
<td>3.24</td>
<td>3.43</td>
<td>—</td>
<td>2.18</td>
<td>2.36</td>
<td>3.03</td>
</tr>
<tr>
<td>[18]crown-6</td>
<td>4.35</td>
<td>6.08</td>
<td>5.32</td>
<td>4.70</td>
<td>3.90</td>
<td>4.14</td>
</tr>
<tr>
<td>[21]crown-7</td>
<td>2.52</td>
<td>2.35</td>
<td>—</td>
<td>5.02</td>
<td>2.80</td>
<td>3.27</td>
</tr>
<tr>
<td>Benzo[18]crown-6</td>
<td>4.30</td>
<td>5.30</td>
<td>4.62</td>
<td>3.66</td>
<td>3.50</td>
<td>—</td>
</tr>
</tbody>
</table>

X-ray crystal structures of [18]crown-6 containing (a) Na$^+$, (b) K$^+$, (c) Cs$^+$ and (d) two Li$^+$ ions (phenolate salt). Na–O bond lengths are significantly longer than optimal.
Methods for synthesizing the crown ethers \((R - V\) are organic linker groups).
The term **podand** was coined by Vögtle and Weber in 1979, referring to acyclic hosts with pendant binding sites, *e.g.*

Podand hosts generally exhibit less cation affinity than their cyclic analogues, as a result of their lack of **preorganisation**, but they may adopt similar wrapping conformations to the crown ethers in the presence of suitable metal cations.

X-ray molecular structure of the europium(III) podand complex
\[[\text{Eu(H}_2\text{O})_3(3.12)]^{3+} \]
Endgroup Concept

Compared to crown ethers, podands show higher degree of flexibility, allowing them to adopt non-binding open conformations. If the podand is terminated by a rigid functionality (e.g. aryl, ester, amide), however, binding is enhanced by the extra degree of organization given to the podand host by the rigidifying endgroup.
The term **lariat ether** (from Spanish *la reata*, lasso) refers to a crown ether or similar macrocyclic derivative with one or more accompanying appendages designed to enhance metal cation complexation ability by giving some three-dimensionality to the binding, e.g.
Examples of lariat ether synthesis

\[
\text{O} - \text{Me} \xrightarrow{\text{TsCl, pyridine, } 0^\circ\text{C, 10 min}} \text{TsO} - \text{Me}
\]
\(\text{Ts} = \text{O}_2\text{S}C_6\text{H}_4\text{Me}\)

(a)

\[
\text{H-} - \text{N-} \xrightarrow{\text{MeO, Na}_2\text{CO}_3} \text{N} - \text{OH} \xrightarrow{\text{NaH / dmf}} \text{Tso(CH}_2\text{CH}_2\text{O})_4\text{Ts}
\]

(b)

\[
\text{Br-} \xrightarrow{\text{ROH}} \text{RO-} \xrightarrow{\text{BrNHCOMe}} \text{HO(CH}_2\text{CH}_2\text{O})_4\text{H}
\]

3.20 \(R = \alpha\text{-C}_6\text{H}_4\text{OMe}\)

3.21 \(R = \rho\text{-C}_6\text{H}_4\text{OMe}\)
Simultaneous four-bond coupling to produce BiBLE ligands

\[
\begin{align*}
\begin{array}{ccc}
R \text{NH}_2 & + & \begin{array}{c}
\text{I} \\
\text{I} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{I} \\
\text{I}
\end{array} \\
\text{MeCN} & \xrightarrow{\text{Na}_2\text{CO}_3} & \begin{array}{c}
\text{R} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{R}
\end{array}
\end{array}
\end{align*}
\]

\[
R = \begin{array}{c}
\text{cyclohexane} \\
\text{cyclohexyl} \text{OMe} \\
\text{pyrrolidine} \\
\text{acetylene} \\
\text{furan}
\end{array}
\]

(* = point of attachment)
A lariat ether-based flouremetric sensor

Log K (M$^{-1}$)

<table>
<thead>
<tr>
<th>Ion</th>
<th>Log K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca$^{2+}$</td>
<td>7.6</td>
</tr>
<tr>
<td>Sr$^{2+}$</td>
<td>6.8</td>
</tr>
<tr>
<td>Ba$^{2+}$</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Measured in CH$_3$CN/CHCl$_3$ (99:1) (1:1 binding)

Crown ethers in molecular devices

- A spirobenzopyran-based crown ether for ion sensing

- A saxitoxin sensor

- A luminescent sensor for ion pairs
• A molecular “AND” logic gate

• Viologen-rotaxane switches
• A molecular elevator

• A molecular motor with a self-complexing lock

Feringa, *Angew. Chem.* 2010, asap article